Example #2
Let's move on to another example:
Multiply (2x + 5)2
I bring this example up for one important reason: it's good to learn that this problem should be done like the other ones in this video, even though it doesn't look like it. If you're not aware of this, it can be very easy to make this simple mistake:
2x2 + 52
Distributing the exponent like this is not allowed! Here's the reason. Squaring something means multiplying it by itself. That means taking 2x + 5 and multiplying it by 2x + 5. Aha! Two binomials! If you make the mistake of distributing the exponent, you are only doing the first and last steps of FOIL and skipping the middle two - not good!
But now that we know how it should be done, let's do it the right way really quick. I'll use the area method for this one just to mix it up a little bit. Because we are multiplying two binomials, we draw our chart with two segments on each side, making four boxes on the inside. I now label each side with one of the binomials, each term getting its own segment of the side, like so.
Now we just look above and across to decide what to multiply for each box. Doing so gives us this:
4x2 + 10x + 10x + 25
and now we can combine like terms to end up with our answer:
4x2 + 20x + 25
Example #3
Our last example will stray away from the title a little bit. You might call it an extra credit question - a preview into a future concept. The reason I do this is to show you that the skills we're mastering now can help you do more than just multiply binomials.
Take (x - 1)(x2 + 5x + 3) for example. These aren't two binomials - this is a binomial times a trinomial. While the FOIL acronym no longer quite applies, it's still the same idea and the area model still works great.
This time, though, instead of making our chart have two segments on each side, we'll make a rectangular chart with two segments on one side and three on the other. The (x - 1) goes on the side with two segments, while the (x2 + 5x + 3) goes on the side with three. And we're good to go!
We simply look above and across to decide what to multiply for each box, fill the entire chart in, and combine like terms. Just like before!
x3 + 5x2 - x2 + 3x - 5x - 3 =
x3 + 4x2 - 2x – 3
Area Method and Other Polynomials
Need to multiply two trinomials? Make your chart three by three! A polynomial with five terms multiplied by one with six? A five by six chart! The area method will help you multiply any two polynomials together no matter what size they are. Hopefully you're starting now to feel like a polynomial pro.
Lesson Summary
Let's review. Conjugates are binomials that have the same terms, only the sign has been changed on the second one. When you multiply them together, you end up with the square of the first term minus the square of the second one: (a + b)(a - b) = a^2 - b^2.
When squaring a binomial, remember not to distribute the square to the two terms and instead rewrite another binomial next to the first one and FOIL it out: (a + b)^2 = (a + b)(a + b).
The area model can be used to multiply any two polynomials together, not just binomials. Simply make your chart have dimensions equal to the number of terms in each polynomial.