Mode
The mode is another measure of central tendency that tells us the number that occurred the most often in your data set. When looking for the mode, there can be more than one mode or no mode. The mode can tell us the most popular choice.
The Bears threw the ball to the following jersey numbers in the third quarter: 5, 6, 6, 3 and 4. You can see that there was only one receiver that had the ball thrown to him more than once. The mode of this data set would be 6. The Bears receiver #6 was the most popular choice to throw the ball to in the third quarter.
The Ducks threw the ball to the following receivers: 12, 13, 15, 17, 19 and 20. You can see that none of these receivers caught more than one pass. This data set has no mode.
Entering the fourth quarter, the Bears had scored the following points: 6, 7, 3, 0, 7, 3, 7 and 3. You can see there are two values that repeat three times each. The mode of this data set is both 3 and 7, which can sometimes be referred to as bimodal. This means that the most popular scoring values for the Bears were 3 and 7.
Range
The last measure of central tendency is the range. The range is the difference between the highest and lowest values. Simply put, find the largest and smallest numbers and then subtract them. The range tells us the distance between the values in our data set.
At the end of the game, the Ducks' kickers had kicked field goals of 10, 14, 17, 19, 21 and 30 yards. Find the range. The smallest value is 10 and the largest value is 30. To calculate the range, subtract the two values: 30 - 10 = 20. The range of this data set is 20.
Example
Let's put our new skills into practice with an example. Let's find the mean, median, mode and range of how many medals the U.S. has won over the last six summer Olympics.
To find the mean of this data set, we would add 104 + 110 + 101 + 94 + 101 + 108, and then divide by 6 because there are six values. So, 104 + 110 + 101 + 94 + 101 + 108 = 618. And, 618 ÷ 6 = 103. So, over the past six Summer Olympics, the United States has been awarded an average of 103 medals.
To find the median, we must first put the data in order from least to greatest. So our numbers in order from least to greatest would be 94, 101, 101, 104, 108, 110. The middle of this data set is actually two numbers (101 and 104). To find the median, we will need to add these two numbers together and divide by 2. 101 + 104 = 205, then dividing by 2 makes the median 102.5.
Looking at this data set, we can see that there is only one number that repeats itself, which is 101. This means that the mode of the data set is 101.
The range of this data set is found by taking the largest value (110) and the smallest value (94) and subtracting. So, 110 - 94 = 16. The range of this data set is 16.
Lesson Summary
In this lesson, we've discussed four measures of central tendency. These measurements can provide you with important information about a set of data. These four measures are the mean, median, mode and range.
- The mean means average. To find it, add together all of your values and divide by the number of addends.
- The median is the middle number of your data set when in order from least to greatest.
- The mode is the number that occurred the most often.
- The range is the difference between the highest and lowest values.